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ABSTRACT

A global/local analysis is applied to the problem of a panel with an edge

delamination crack subject to an impulse loading to ascertain the dynamic J

integral. The approach uses the spectral element method to obtain the global

dynamic response and local resultants to obtain the J integral. The variation of J

integral along the crack front is shown. The crack behavior is mixed mode (Mode

II and Mode III), but is dominated by the Mode II behavior.

INTRODUCTION

Integrally stiffened panels, such as those shown in Figure 1, are commonly

used in aircraft structural design. Static pressure loads have been found to cause

high stresses in the vicinity of the flange termination line which can cause stiffener

debonding from the skin [1]. Fracture mechanics analyses have previously been

performed on these structures [2, 3] to determine the static strain energy release

rate using two- and three-dimensional finite element analyses. Static pressure loads

are not the only mechanism for skin-stiffener debonding, however. A recent series

of acoustic tests on stiffened carbon/carbon panels [4, 5] indicate that dynamic

pressure loading can produce similar failures. Because of resonant peaks in the

structural response, the dynamic loads need not be as large as the static loads,

particularly for lightly damped structures. Thus, the dynamic, and not the static

loads, may ultimately be the cause of failure in these structures. This paper presents

an approach for determining the dynamic fracture mechanics quantities. To help

focus ideas, the problem of an edge delamination crack, as shown in Figure 1, is

analyzed to illuminate the features of the local crack dynamics. The delamination

is taken as being symmetric about the z = 0 plane.
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Figure 1: Section of an integrally stiffened panel aircraft panel.

The fracture mechanics approach previously employed, based on two-

dimensional plate finite elements [2] or three-dimensional brick finite elements [3]

is unsuitable for the dynamics problem; the necessity to adequately distribute the

mass requires a much finer finite element model than one used to model the struc-

ture for the static problem, even in areas remote from the crack tip. Therefore, the
use of alternative methods is indicated.

The objective of this paper is to develop an approach to determine the dynamic

J integral [6, 7]. The J integral, in the Mode II "shearing mode" for example, is

related to the strain energy release rate G and the stress intensity factor K as

d = G- K]I
---E- (i)

and therefore is an appropriate measure of the local crack tip behavior. (In

equation (1), E is the modulus of elasticity). Although the quantities used in

the dynamic J integral could be determined from a conventional finite element

analysis, this approach is not taken because of the large memory requirements.

Instead, the dynamic analysis is performed using the spectral element method

[8]. Unlike the finite element method, the spectral element formulation models

the mass distribution exactly, and consequently, only a very few elements are

required, resulting in a greatly reduced system size. The spectral element used

is an augmentation of an in-plane spectral element [9] which includes the flexural
degrees of freedom.



Comparisonsare first made betweenthe spectral elementanalysisand a three-
dimensionalplate finite elementanalysis to establish the adequacyof the spectral
elementmodel of the global dynamics of the cracked panel. Results from a plane

strain dynamic analysis are compared to establish the validity of the fracture

mechanics approach used. Finally, J integrals are presented for stress waves with

general, non-plane distributions. The variation of the quantities along the crack

front are discussed.

DYNAMIC FRACTURE MECHANICS ANALYSIS

A global/local approach is taken to model the crack dynamics. That is,

the problem is separated into the global structural dynamics of connected three-

dimensional plates on the one hand, and the local crack tip behavior on the other.

This approach has proven to be very accurate and convenient in the case of two-

dimensional split beam problems [10, 11] and, therefore, is a natural approach for

the complicated three-dimensional plate problem of interest here.

Global Dynamics

The specific problem studied is that of a thin sheet containing an edge delami-

nation crack, as shown in Figure 1. Isotropic material properties were used in the

present analysis to help concentrate attention on the application of the approach.

The analysis of composite structures will be left as an item for further study. The

material properties used were for aluminum: Young's Modulus = 10.6 × 106 psi,

shear modulus = 4.0 × 106 psi, and density = 2.61 × 10 -4 lb-s2/in 4. The plate thick-

ness was taken as 0.065 in. Each leg of the cracked region was 3 in. long. An impulse

loading, P(t), applied at a distance d = 3in. from the crack, is shown in Figure 1.

Figure 2: Spectral element discretization of an edge delamination crack.

The cracked panel was modeled as a three-dimensional structure of connected

flat plates using spectral elements, as shown in Figure 2. The black dots indicate

generalized nodes that extend indefinitely in the y-direction. An advantage of the

spectral approach was that the material in the negative x-direction could be modeled

using a semi-infinite plate. This allowed the responses from the crack to be focused



on without reflectionsoff the far boundary. Eachspectralelementusedcansupport
both in-plane [9] and out-of-plane (flexural) [8] motions. The initial disturbance
generatedwas flexural only, but on reaching the crack, in-plane behavior results
becauseof the vertical offset of the split plate centerlinesin the crackedregion.
The result of the global analysisis the structural degreesof freedom(displacements
and rotation)

U, Y, W, ¢y

and structural resultants (forces and moment) per unit length

Nx, N,, N,,

at any location and time. A double summation of 512 wavenumber and 2048

frequency components was used for a spatial window of 400 in. and time window

of 14,329 /_s.

For the purpose of verifying the global dynamics, a three-dimensional plate

finite element analysis was also performed. This used DKT elements [12] to model

the out-of-plane behavior and constant strain triangle elements [13] for the in-plane

behavior. The model extended 6 in. toward the negative x-direction and 9 in.

toward the positive y-direction, with the x-axis taken as a line of symmetry. A

uniform mesh of 8640 elements, each with a characteristic length of 0.25 in., was

used and the system was solved using Newmark integration at 1 /_s increments.

Assembly of multiply connected plate structures produces large excursions from

the mean bandwidth of the system, so a profile solver [13] was implemented in the

finite element program so that the system could be solved.

Comparisons of the velocity histories are shown in Figure 3 for several locations

along the x-axis. The spectral and finite element analyses agree well up to the point

of reflections off the negative x and positive y boundaries in the finite element model.

The vertical w velocities of the top and bottom split sections are identical, indicating

the absence of Mode I "opening mode" crack behavior. This is a consequence of

symmetry about the crack (z = 0) plane and that the delaminated regions are equal

in length above and below the crack plane. Note however that a longer section

on one side of the crack would additionally generate Mode I behavior because the

non-symmetric reflections would cause a non-symmetric loading at the crack tip. Of

particular note is the presence of an in-plane velocity component in the delaminated

area. The horizontal u velocities of the top and bottom split sections are equal and

opposite indicating the presence of Mode II "sliding mode" crack behavior.
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Figure 3:

(--) and finite element (...) methods for the split plate.

Comparison of velocities obtained from spectral

Local Fracture Mechanics

The dynamic J integral is related to the local stresses and displacements by [14]

J = [ [Wnl Oui ] [ .. Oui ]
ti-_zl l dS + f dVJL -

F V

(4)

where F is a line contour around the crack, V is the enclosed volume per unit length,

W is the strain energy density, nl is the unit normal vector pointing outside the

integration path F, ti is the traction vector, and ui is the displacement.



The volumeintegral usually causescomputationaldifficulties becauseit requires
the evolution of the accelerationat every point inside the volume and must be
performed at each time step. We avoid this difficulty by collapsing the inclined
member model of the local crack regionusedin the previoussection, to one using
vertical memberswith reduceddensity. This results in a zero-volumecontour as
shownin Figure 4 which encompassesonly the cross-sectionaldiscontinuity at the
crack tip. On a continuoussystem,this would give a trivial zero integral, but if we
first replace the stressesand strains in terms of the structural resultants weget

Lh=
12(M_ + Mi)

- 2.4(1 + U) n"'_ + 2E (5)+ h 4

where the summation is over each section of the crack, y is the Poisson's ratio, and

h is the plate thickness. The local analysis has thus taken the global resultants

and converted them into detailed information (via J) about the crack tip. It is

worth pointing out that the use of vertical spectral members has little effect on the

predicted global dynamics in comparison to results from the inclined spectral model.

The inclined model was used solely for comparison with the finite element model,

which can not accommodate the high aspect ratio elements required to model the
vertical members.

Method Validation

To help validate the approach taken, a comparison was made for the plane strain

case. For this case, the load was distributed uniformly in the y-direction giving only

x and t variations in the responses. The spectral analysis used a single (plane wave)

wavenumber component. Results from a two-dimensional plane strain finite element

analysis employing the virtual crack closure technique (VCCT) [15] were used for

comparison. Using the VCCT, the stress intensity was obtained as

. /(ut - ub)FxE(1 - v 2)
KI! V 2bAa (6)
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Figure 5: Comparison of I(II from spectral (--) and

finite element (...) methods for the plane strain problem.

where u is the top and bottom horizontal displacement along the crack one node

from the crack tip, Fx is the horizontal nodal force at the crack tip, b is the thickness

in the y-direction, and Aa is the element size. Figure 5 shows a comparison of the

magnitude of the Mode II stress intensity factor as a function of time. The two

solutions agree to the extent of the reflections in the finite element model. These

results establish the basic validity of our global/local approach.

RESULTS AND DISCUSSION

J integral histories were obtained for the general, non-plane wave, case using the

global/local approach described. As previously indicated, the Mode I contribution

for this problem is zero since both upper and lower sections of the delaminated

area have the same displacement. The variation of J integral along the crack front
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Figure 6: Y integral histories as a function of

9 for a panel with an edge delamination crack.

is shown in Figure 6. The magnitudes decrease with increasing distance from the

loading. At V = 0, the plot corresponds to a pure Mode II situation. Further, since

the d integral is a maximum at V = 0, Figure 6 indicates the problem is dominated

by the Mode II behavior.

At non-zero V, there is also a Mode III "tearing mode" contribution. Figure 7

shows the difference in the horizontal v displacement at non-zero 9, indicating the

presence of a Mode III component. This difference increases to a maximum then

decreases with increasing y. This can be explained by realizing that as y increases,

the normal to the wave front becomes increasingly parallel to the crack front, so the

grazing incidence wave causes rotation about an axis parallel to the z-axis. This

effect is not observed in the plane strain case as the normal to the wave front is

always perpendicular to the crack front. The presence of the Mode III behavior is

interesting and is worthy of further investigation.
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Figure 7: Change in displacement of horizontal u and v components.

CONCLUDING REMARKS

A global/local analysis has been applied to obtain the J integral along the

crack front of a panel with an edge delamination. The approach is computationally

attractive in comparison to the finite element approach since the system size is

greatly reduced. Comparison of the results with those obtained from a finite

element analysis for the plane strain case validates the application of the global/local

approach to the class of problems considered.

The application of this approach to the delamination problem has provided an

interesting view of the dynamic crack behavior. The Mode II behavior is dominant

and varies significantly along the crack front, being a maximum at y = 0. Since the

geometry considered was symmetric about the crack plane, the Mode I behavior

is absent. In the case of the integrally stiffened panel, however, symmetry about

the crack plane does not exist and the crack is likely to additionally exhibit a

Mode I behavior. This aspect is left as an area for further study. \Vith the

presence of a Mode III behavior established, this study indicates it is necessary



to model the problem in a three-dimensionalmanner for the general, non-plane
wave, case.As it is not practical to do sousing a dynamic three-dimensionalbrick
finite element analysis, the useof an alternative method, suchas the global/local
analysispresentedhere, is dictated. It remainsto be seenhow the Mode II and III
contributions can be quantitatively separatedthrough the useof the global/local
analysis.

REFERENCES

1. M.W. Hyer, D.C. Loup, and J.H. Starnes, Jr. Stiffener/skin interaction in
pressure-loadedcompositepanels.AIAA Journal, 28(3):532-537, 1990.

2. J.T. Wang, I.S. Raju, C.G. Davila, and D.W. Sleight. Computation of strain

energy release rates for skin-stiffener debonds modeled with plate elements.

Proceedings of the AIAA/ASME/ASCE/AttS/ASC 3_th Structures, Structural

Dynamics and Materials Conference, 1993. AIAA Paper 93-1501.

3. I.S. Raju, R. Sistla, T. Krishnamurthy, and C.G. Lotts. Fracture

mechanics analyses for skin-stiffener debonding. Proceedings of the

AIAA/ASME/ASCE/AHS/ASC 34th Structures, Structural Dynamics and Ma-

terials Conference, 1993. AIAA Paper 93-1502.

4. J. Leatherwood, S. Clevenson, and E. Daniels. Acoustic testing of high

temperature panels. Proceedings of the AIAA 13th Aeroacoustics Conference,
1990. AIAA Paper 90-3939.

5. S.A. Rizzi, S.A. Clevenson, and E.F. Daniels. Acoustic fatigue characterization

of carbon/carbon panels. Proceedings of the VII International Congress on

Experimental Mechanics, II:1348-1355, 1992.

6. J.R. Rice. A path independent integral and the approximate analysis of strain

concentration by notches and cracks. Journal of Applied Mechanics, pages 379-
386, 1968.

7. S.N. Atluri. Computational Methods in the Mechanics of Fracture, chapter 5.
Springer-Verlag, 1983.

8. J.F. Doyle. Wave Propagation in Structures. Springer-Verlag, 1989.

9. S.A. Rizzi and J.F. Doyle. A spectral element approach to wave motion in

layered solids. Journal of Vibration and Acoustics, 114(4):569-577, 1992.

10. T.N. Farris and J.F. Doyle. A global/local approach to lengthwise cracked

beams: Static analysis. International Journal of Fracture, 50:131-141, 1991.

11. T.N. Farris and J.F. Doyle. A global/local approach to lengthwise cracked

beams: Dynamic analysis. To appear in International Journal of Fracture, 1993.

10



REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704.0188

Pud_c relxxtJ_ burckm for this oole_ion oQi_ion is mtimatod to average 1 hour per rwponse, including the time for rev_wn_g instn_lions, Beaching existing dicta sour¢xm,

ga_Y, qmng m_l rmi_nta_ng the data needed, ond G_npkNing and re_Ming the oollIct ion of i_f_. Send oomme_s regarding this burden eetimam or any other aAoect ot this

oolection of informalion, including suggestions for reducing this burden, to Washington Headquarters Services, Dimctorete for Information O_ions _ Reports, 1215 Jefferson Daws

Highway, Suite 1204, Arlington, VA 22202-4302, and tolhe Offioe d M_t and Budget, Paioenm_k Reduction Pro_ed (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave b/ank) i 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I April 1994 Technical Memorandum
4. TITLE AND SUBTITLE

Dynamic Fracture Mechanics Analysisfor an Edge Delamination Crack

s. AUTHON(S)
S. A. Rizzi

J. F. Doyle

7. PERFORMINGORGANIZATIONNAME(S)ANDADDRESS{ES)

NASA Langley Research Center

Hampton, VA 23681-0001

$. SPONSORING/ MONITORINGAGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546

5. FUNDING NUMBERS

WU 505-63-50-10

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING I MONITORING
AGENCY REPORT NUMBER

NASA TM-109106

11. SUPPLEMENTARY NOTES

Rizzi: Langley Research Center, Hampton, VA
Doyle: Purdue University, West Lafayette, IN
Note: Paper submitted for presental_on at the Fifth InternatJonaJ Conference on Recent Advances in Structural Dynamics, Southampton,
England, 7118-21/94.

12L DISTRIBUTIONI AVAILABILITYSTATEMENT

Unclassified -- Unlimited

Subject Category -- 71

12b. DISTRIBUTION

13. ABSTRACT (Maximum 200 winds)

A global/local analysis is applied to the problem of a panel with an edge delamination crack subject to
an impulse loading to ascertain the dynamic J integral. The approach uses the spectral element method
to obtain the global dynamic response and local resultants to obtain the J integral. The variation of J
integral along the crack front is shown. The crack behavior is mixed mode (Mode II and Mode III), but
is dominated by the Mode II behavior.

14. SUBJECTTERMS

Dynamic Integral; Spectral Element Method; Fracture Mechanics; Delamination
Crack

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

I

NSN 7540-01-280-5500

15. NUMBER OF PAGES

12
18. PRICE COOE

A03

20. UMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Prl_oribed by ANSI Sld. Z39-18

298-102



12. J.L. Batoz, K.J. Bathe, and L.W. Ho. A study of three-node triangular plate

bending elements. International Journal for Numerical Methods in Engineering,

15:1771-1812, 1980.

13. R.D. Cook, D.S. Malkus, and M.E. Plesha. Concepts and Applications of Finite

Element Analysis. Wyle & Sons, 3rd edition, 1989.

14. T. Nakamura, C.F. Shih, and L.B. Freund. Computational methods based on

an energy integral in dynamic fracture. International Journal of Fracture, pages

229-243, 1985.

15. E.R. Rybicki and M.F. Kanninen. A finite element calculation of stress intensity

factors by a modified crack closure integral. Engineering Fracture Mechanics,

9:931-938, 1977.

11






